# Prophesy: A Web-based Performance Analysis and Modeling System for Parallel and Grid Applications

Valerie Taylor
Texas A&M University

Xingfu Wu, Joseph Paris Northwestern University

Rick Stevens, Ivan Judson, Mark Hereld *Argonne National Laboratory* 

## Outline

- Prophesy System
- Prophesy Database
- Data Collection: PAIDE System
- Data Analysis: Model Builder
- Summary

mcsna

## **Prophesy System**



## **Prophesy System**

- Data Collection
  - ✓ PAIDE system
- Prophesy Database
  - Systems Database
  - Performance Database
  - Template Database
- Data Analysis
  - Model Builder
  - Symbolic Predictor

## **Prophesy Database**



- Hierarchical organization
- Organized into 4 areas:
  - Application
  - ◆ Executable
  - ◆ Run
  - ◆ Performance Statistics

mestra

# Applications



## **Prophesy Database**



## **User Input**

User should register an account and an application online first.



Done once for all executables of the application the user owns.



## Data Collection: PAIDE System



- Automated Source-code instrumentation at the multiple levels via PAIDE
- Support for C, Fortran77 and 90 programs
- Minimal instrumentation overhead and code
- Performance Data entered into the database automatically via PAIDE or manually via web site

# PAIDE System



#### Options:

-ALL: Instrument all procedures and outer loops

-PROC: Instrument all procedures

-LOOP: Instrument all loops

-NOP: Instrument all procedures not nested in loops

-FTP: Use Perl SOAP scripts to automatically transfer performance data to the Prophesy database

Default: Instrument procedures and outer loops

#### Performance Data Files

#### For user and application:

- ✓ User name
- Password
- Email
- Application Name
- Application Version

#### For each executable:

- ✓ Executable Name
- ✓ Problem Size
- ✓ Total Number of Processors
- ✓ Total Execution Time
- Processor Number
- System Name
- Run Date and Time

#### For each event (procedure or loop):

- ✓ Event ID
- Start Line Number
- End Line Number
- Event type (Procedure or Loop)
- Procedure Name (if event type is Procedure)
- Caller Name
- Module Name
- ✓ Runtime
- Square of runtimes

#### Data Entry

- Use Perl SOAP scripts to automatically process the performance data files at the end of program execution, and put the data into the Prophesy database.
- Use web form interfaces to manually put the data into the Prophesy database.
- Use Perl SOAP script to automatically process performance data files generated by SvPablo, and put them into the database.

## Data Analysis: Model Builder



Develop performance models

- Make runtime predictions
- Identify best implementation
- Identify performance trends and performance bottlenecks

## **Develop Performance Models**

- Utilize information in the Prophesy databases
  - Performance database
  - Template database
  - System database
- Three techniques
  - Curve Fitting
  - Parameterization
  - Coupling

mcsra

### Model Builder Framework



## **Curve Fitting Method**

- Uses least squares
- Uses database information
  - Executable information
    - ✓ Runtime
    - ✓ Inputs (problem size)
    - Number of Processors
    - User selected model order
- Does not expose system parameters

# Curve Fitting: Usage

Analytical Equation (Octave: LSF)

Matrix-matrix multiply: LSF: 3

> Model Template

Performance Data **Function Performance** 

**Application** 

Performance

Basic Unit Performance

Data
Structure
Performance

#### **Parameterization Method**

- Requires manual analysis of the kernel or function
  - Hand count operations
  - Expose system parameters
  - Only needs to be done once per kernel
- Uses database information
  - System database
  - Model template database

## Parameterization: Usage

Analytical Equation (Octave: Parameterization)

# Matrix-matrix multiply: Parameterization:

Parameter(P, SGI Origin2000, N, ADDM, MPISR, MPIBC)

**Model Template** 



## **Coupling Method**

- Represents an application in terms of its kernels or components
- Does not require manual analysis
- Uses database information
  - Coupling values
  - ✓ Performance data

# Coupling Method: Usage







## Summary

- Instrument at the level of basic blocks and/or procedures automatically via PAIDE.
- Enter data into the database automatically via PAIDE or manually via web site.
- Present the automated modeling component of Prophesy with three techniques:
  - Curve Fitting
  - ✓ Parameterization
  - Coupling

## Prophesy System Web Page

